Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering.

Optics Express 2011 July 5
Photoacoustic microscopy usually uses high-frequency photoacoustic waves, which provide not only high spatial resolution but also limitation of the penetration depth. In this study, we developed two-photon absorption-induced photoacoustic microscopy (TP-PAM) to improve the depth resolution without use of high-frequency photoacoustic waves. The spatial resolution in TP-PAM is determined by two-photon absorption. TP-PAM with a 20X objective lens (numerical aperture: 0.4) provides an optically-determined depth resolution of 44.9 ± 2.0 μm, which is estimated by the full width at half maximum of the photoacoustic signal from an infinitely small target, using low-frequency bandpass filtering of photoacoustic waves. The combination of TP-PAM and frequency filtering provides high spatial resolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app