Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gender-based differences in substrate use during exercise at a self-selected pace.

The aim of this study was to investigate gender-based differences in substrate use during exercise at a self-selected pace. Seventeen men and 17 women performed a maximal exercise test and a 20-minute bout of self-paced treadmill walking to determine carbohydrate and fat oxidation rates. Gas exchange measurements were performed throughout the tests, and stoichiometric equations were used to calculate substrate oxidation rates. For each individual, a best-fit polynomial curve was constructed using fat oxidation rate (g·min(-1)) vs. exercise intensity (percentage of maximal oxygen uptake, % VO(2)max). Each individual curve was used to obtain the following variables: maximal fat oxidation (MFO), the peak rate of fat oxidation measured over the entire range of exercise intensities; fat(max), the exercise intensity at which the MFO was observed; and fat(max) zone, range of exercise intensities with fat oxidation rates within 10% of fat oxidation rates at fat(max). Although the MFO was similar between genders, fat(max) was lower in men than in women. Similarly, the "low" and "high" borders of the fat(max) zone were lower in men than in women. During exercise at a self-selected pace, carbohydrate oxidation rates were greater in men than in women, despite no gender-based differences in fat oxidation rates. However, fat oxidation contribution to total energy expenditure (EE) was greater in women than in men, despite no gender-based differences in the exercise intensity. In conclusion, although both genders self-selected a similar exercise intensity, the contribution of fat oxidation to EE is greater in women than in men. Interestingly, both genders self-selected an exercise intensity that falls within the fat(max) zone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app