Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Patterns of brain glucose metabolism induced by phosphodiesterase 10A inhibitors in the mouse: a potential translational biomarker.

Phosphodiesterase 10A (PDE10A) inhibitors have recently been proposed as a new therapy for schizophrenia. The aim of this study was to enhance our understanding of the role of PDE10A inhibitors and potentially identify a clinically useful mechanistic/functional biomarker by using 2-deoxyglucose (2-DG) autoradiography. PDE10A inhibitors papaverine (10 and 40 mg/kg), 6,7-dimethoxy-4-[(3R)-3-(2-quinoxalinyloxy)-1-pyrrolidinyl]quinazoline (PQ-10), (0.16-10 mg/kg), and 2-[{4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)phenoxy}methyl]quinoline (MP-10) (0.16-40 mg/kg) induced region-specific hypermetabolism in the globus pallidus and lateral habenula of C57BL/6 mice. Studies with MP-10 revealed a dose-dependent relative increase in globus pallidus activation, whereas a bell-shaped curve was observed for the lateral habenula. Although the relative increase in 2-DG uptake in the lateral habenula was also characteristic of the D(2) antagonist haloperidol (0.01-0.63 mg/kg), relative 2-DG changes were absent in the globus pallidus. This observation probably is explained by the interaction of PDE10A inhibitors with the D(1) direct pathway as suggested by experiments in combination with the D(1) agonist (±)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-82958) (0.16 mg/kg). The absence of an effect of MP-10 (2.5 mg/kg) on relative glucose metabolism in the globus pallidus and lateral habenula of PDE10A knockout mice confirmed the specificity of the signal induced by PDE10A inhibitors. These studies substantiate the regulatory role of PDE10A in the basal ganglia circuit and as such support the potential of PDE10A inhibitors for treating psychiatric disorders. Moreover, we could differentiate PDE10A inhibitors from haloperidol based on specific patterns of hypermetabolism probably caused by its combined action at both direct and indirect dopaminergic pathways. Finally, these specific changes in brain glucose metabolism may act as a translational biomarker for target engagement in future clinical studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app