Add like
Add dislike
Add to saved papers

Dosimetric comparison between helical tomotherapy and intensity-modulated radiation therapy plans for non-small cell lung cancer.

BACKGROUND: Helical tomotherapy (HT) is a new image-guided intensity-modulated radiation therapy (IMRT) technique. It is reported that HT plan for non-small-cell lung cancer (NSCLC) can give better dose uniformity, dose gradients, and protection for the lung than IMRT plan. We compared the dosimetric characteristics of HT for NSCLC with those of conventional IMRT to observe the superiority of HT.

METHODS: There was a comparative case series comprising 10 patients with NSCLC. Computed tomographic (CT) images of delineated targets were transferred to the PrecisePlan planning system (IMRT) and Tomo planning system (HT). The prescription doses were 70 Gy/33F for the gross tumor volume (GTV) and the visible lymph nodes (GTVnd), and 60 Gy/33F for the clinical target volume (CTV) and the clinical target volume of the visible lymph nodes (CTVnd). The dose restrictions for organs at risk were as follows: the maximum dose to spinal cord ≤ 45 Gy, V20 to the total lungs < 30%, V50 to the heart < 50%, and V55 to the esophagus < 50%. Both plans were evaluated by means of the dose coverage of the targets, dose-volume histograms (DVHs), and other dosimetric indices.

RESULTS: The dose coverage, conformity, and homogeneity of the targets' volumes were found to be satisfactory in both plans, but the homogeneity of the HT plan was better than that of IMRT. The high-dose radiation volume (V20-V30) to the lung and the mean lung dose (MLD) decreased (P < 0.05), but the low-dose radiation volume (V5-V10) increased slightly in the HT plan (P > 0.05). The maximum doses to the spinal cord, heart, esophagus and trachea in the HT plan were lower than those in the IMRT plan, but the differences were not statistically significant.

CONCLUSIONS: The HT plan provids better dose uniformity, dose gradients, and protection for the organs at risk. It can reduce the high-dose radiation volume for lung and the MLD, but may deliver a larger lung volume of low-dose radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app