Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Translocation and oligomerization of Bax is regulated independently by activation of p38 MAPK and caspase-2 during MN9D dopaminergic neurodegeneration.

Bax is translocated into the mitochondrial membrane and oligomerized therein to initiate mitochondrial apoptotic signaling. Our previous study indicated that reactive oxygen species (ROS)-mediated activation of mitogen-activated protein kinase (MAPK) and caspase is critically involved in 6-hydroxydopamine (6-OHDA)-mediated neurodegeneration. Here, we specifically attempted to examine whether and how these death signaling pathways may be linked to Bax translocation and oligomerization. We found that 6-OHDA treatment triggered translocation and oligomerization of Bax onto the mitochondria in MN9D dopaminergic neuronal cells. These events preceded cytochrome c release into the cytosol. Cross-linking assay revealed that co-treatment with a ROS scavenger or a pan-caspase inhibitor inhibited 6-OHDA-induced Bax oligomerization. Among several candidates of ROS-activated MAPKs and caspases, we found that co-treatment with PD169316 or VDVAD specifically inhibited 6-OHDA-induced Bax oligomerization, suggesting critical involvement of p38 MAPK and caspase-2. Consequently, overexpression of a dominant negative form of p38 MAPK or a shRNA-mediated knockdown of caspase-2 indeed inhibited 6-OHDA-induced Bax oligomerization. However, activation of p38 MAPK and caspase-2 was independently linked to oligomerization of Bax. This specificity was largely confirmed with a Bax 6A7 antibody known to detect activated forms of Bax on the mitochondria. Taken together, our data suggest that there is an independent amplification loop of Bax translocation and oligomerization via caspase-2 and p38 MAPK during ROS-mediated dopaminergic neurodegeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app