Add like
Add dislike
Add to saved papers

Experimental measurements and Monte Carlo simulations of dose perturbation around a nonradioactive brachytherapy seed due to 6- and 18-MV photons.

Brachytherapy 2012 September
PURPOSE: Radioactive seeds used in permanent prostate brachytherapy are composed of high-Z metals and may exceed 100 in a patient. If supplemental external beam treatment is administered afterward, the seeds may cause substantial dose perturbation, which is being investigated in this article.

METHODS AND MATERIALS: Film measurements using 6-MV beam were primarily carried out using Kodak XV2 film layered above and below a nonradioactive iodine-125 ((125)I) seed. Monte Carlo simulations were carried out using DOSXYZnrc. Other experimental comparisons looked at changing beam energy, depth, and field size, including two opposing fields' pair. Effect of multiple seeds spatially spaced 0.5cm vertically was also studied.

RESULTS: For a single (125)I seed, on XV film, there is a localized dose enhancement of 6.3% upstream and -10.9% downstream. With two opposing fields, a cold spot around the seed of ∼3% was noticed. Increasing beam energy and field size decreased the magnitude of this effect, whereas the effect was found to increase with the increasing Z of material. DOSXYZnrc and EBT-2 film verified maximum dose enhancement of +15% upstream and -20% downstream of the (125)I seed surface.

CONCLUSIONS: In general, the dose perturbation because of the seeds was spatially limited to ∼2mm upstream and ∼5mm downstream to the incident beam. Similar to other heterogeneities, the seeds perturbation depends on incident beam energy, field size, and its Z. With multiple seeds spatially apart and multiple radiation fields routinely used in external beam radiotherapy, the cumulative effect may not result in clinically significant dose perturbation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app