JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Subchondral bone changes in three different canine models of osteoarthritis.

OBJECTIVE: To test the hypothesis that changes in subchondral bone are significantly different among three canine models of osteoarthritis (OA).

DESIGN: In 21 purpose-bred mongrel dogs, OA was induced in one knee joint via either anterior cruciate ligament transection (ACLt; n = 5), medial femoral condylar groove creation (GR; n = 6), or medial meniscal release (MR; n = 5). Five dogs that had sham surgery (SH; n = 5) in one knee joint served as controls. Lameness scoring was performed every 4 weeks. Twelve weeks after surgery, the knee joints were examined by histology and histomorphometry.

RESULTS: Articular cartilage pathology as determined by Mankin scores was significantly severe in all three OA models compared to SH controls in the medial tibia (P < 0.001 to P = 0.026). ACLt had significantly thinner subchondral plate thickness (Sp.Th) in both the medial and lateral tibias while MR had significantly thicker Sp.Th in the medial tibia compared to SH controls (P < 0.001 to P = 0.011). Trabecular bone volume (BV/TV) and trabecular bone thickness (Tb.Th) for ACLt were significantly less than SH controls in the tibias (P < 0.001 to P = 0.011). Tibial Sp.Th, BV/TV, and Tb.Th were all moderately to strongly correlated with lameness scores obtained throughout the study period (r = -0.436 to r = -0.738, P < 0.001 to P = 0.047) while Mankin scores showed moderate to strong correlations with Sp.Th in each OA model (r = 0.465 to r = 0.816, P < 0.001 to P = 0.033).

CONCLUSIONS: Changes in Sp.Th are associated with articular cartilage damage while tibial Sp.Th and BV/TV and Tb.Th appear to be all influenced by joint loading alterations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app