JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice.

Journal of Nutrition 2011 September
Dyslipidemia and oxidative stress contribute to atherogenesis. Astaxanthin (ASTX) is a red-colored carotenoid well known for its high antioxidant capacity. However, its effects on lipid metabolism and antioxidant defense mechanisms have received only limited investigation. We fed male apoE knockout (apoE)(-/-) mice, a mouse model for atherosclerosis, a high-fat (15%)/high-cholesterol (0.2%) diet alone (control) or supplemented with ASTX-rich Hematococcus pluvialis extract (0.03% ASTX by weight) for 4 wk. ASTX-fed apoE(-/-) mice had significantly lower plasma total cholesterol and TG concentrations than controls, but body weight and plasma alanine aminotransferase and aspartate aminotransferase did not differ between the groups. qRT-PCR analysis demonstrated significantly greater mRNA levels of LDL receptor (LDLR), 3-hydroxy-3-methylglutaryl CoA reductase, and sterol regulatory element binding protein 2 (SREBP-2) and greater mature SREBP-2 protein in the livers of ASTX-fed mice, indicating that increased LDLR expression may be responsible for the hypocholesterolemic effect of ASTX. Hepatic lipogenic gene expression was not altered, but carnitine palmitoyl transferase 1, acetyl-CoA carboxylase β, and acyl-CoA oxidase mRNA abundance were significantly increased by ASTX supplementation, suggesting the TG-lowering effect of ASTX may be due to increased fatty acid β-oxidation in the liver. Expression of the nuclear factor E2 related factor 2-responsive endogenous antioxidant gene also was induced with concomitantly lower glutathione disulfide levels in the livers of ASTX-fed apoE(-/-) mice compared to controls. In conclusion, these results suggest that supplementation of ASTX-rich H. pluvialis extract improves cholesterol and lipid metabolism as well as antioxidant defense mechanisms, all of which could help mitigate the progression of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app