COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differential outcomes in prediabetic vs. overtly diabetic NOD mice nonmyeloablatively conditioned with costimulatory blockade.

OBJECTIVE: Autoimmune diabetes can be reversed with mixed chimerism. However, the myelotoxic agents currently required to establish chimerism have prevented the translation of this approach to the clinic. Here, we investigated whether multimodal costimulatory blockade would enhance chimerism and promote islet allograft tolerance in spontaneously diabetic nonobese diabetic (NOD) mice.

MATERIALS AND METHODS: Prediabetic and spontaneously diabetic NOD mice were preconditioned with anti-CD8 monoclonal antibody before conditioning with 500 cGy total body irradiation and transplantation with 30 × 10(6) B10.BR bone marrow cells. Overtly diabetic animals were conditioned similarly and transplanted with 300 to 400 B10.BR islets. After irradiation, both groups of recipients were treated with anti-CD154, anti-OX40L, and anti-inducible T-cell costimulatory monoclonal antibodies. Urine, blood glucose levels, and chimerism were monitored.

RESULTS: Conditioning of NOD mice with costimulatory blockade significantly enhanced engraftment, with 61% of mice engrafting at 1 month. Eleven of 12 chimeric animals with engraftment at 1 month remained diabetes-free over a 12-month follow-up, whereas nonchimeric animals progressed to diabetes. In contrast, similar conditioning prolonged islet allograft survival in only 2 of 11 overtly diabetic NOD recipients. Chimerism levels in the 9 islet rejector animals were 0%.

CONCLUSIONS: Although nonmyeloablative conditioning reversed the autoimmune process in prediabetic NOD mice, the same regimen was significantly less effective in establishing chimerism and reversing autoimmune diabetes in spontaneously diabetic NOD mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app