Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models.

OBJECTIVE: Sodium nitroprusside-enhanced cardiopulmonary resuscitation consists of active compression-decompression, an impedance threshold device, abdominal binding, and large intravenous doses of sodium nitroprusside. We hypothesize that sodium nitroprusside-enhanced cardiopulmonary resuscitation will significantly increase carotid blood flow and return of spontaneous circulation compared to standard cardiopulmonary resuscitation after prolonged ventricular fibrillation and pulseless electrical activity cardiac arrest.

DESIGN: Prospective randomized animal study.

SETTING: Hennepin County Medical Center Animal Laboratory.

SUBJECTS: Forty Yorkshire female farm-bred pigs weighing 32 ± 2 kg.

INTERVENTIONS: In protocol A, 24 isoflurane-anesthetized pigs underwent 15 mins of untreated ventricular fibrillation and were subsequently randomized to receive standard cardiopulmonary resuscitation (n = 6), active compression-decompression cardiopulmonary resuscitation + impedance threshold device (n = 6), or sodium nitroprusside-enhanced cardiopulmonary resuscitation (n = 12) for up to 15 mins. First defibrillation was attempted at minute 6 of cardiopulmonary resuscitation. In protocol B, a separate group of 16 pigs underwent 10 mins of untreated ventricular fibrillation followed by 3 mins of chest compression only cardiopulmonary resuscitation followed by countershock-induced pulseless electrical activity, after which animals were randomized to standard cardiopulmonary resuscitation (n = 8) or sodium nitroprusside-enhanced cardiopulmonary resuscitation (n = 8).

MEASUREMENTS AND MAIN RESULTS: The primary end point was carotid blood flow during cardiopulmonary resuscitation and return of spontaneous circulation. Secondary end points included end-tidal CO2 as well as coronary and cerebral perfusion pressure. After prolonged untreated ventricular fibrillation, sodium nitroprusside-enhanced cardiopulmonary resuscitation demonstrated superior rates of return of spontaneous circulation when compared to standard cardiopulmonary resuscitation and active compression-decompression cardiopulmonary resuscitation + impedance threshold device (12 of 12, 0 of 6, and 0 of 6 respectively, p < .01). In animals with pulseless electrical activity, sodium nitroprusside-enhanced cardiopulmonary resuscitation increased return of spontaneous circulation rates when compared to standard cardiopulmonary resuscitation. In both groups, carotid blood flow, coronary perfusion pressure, cerebral perfusion pressure, and end-tidal CO2 were increased with sodium nitroprusside-enhanced cardiopulmonary resuscitation.

CONCLUSIONS: In pigs, sodium nitroprusside-enhanced cardiopulmonary resuscitation significantly increased return of spontaneous circulation rates, as well as carotid blood flow and end-tidal CO2, when compared to standard cardiopulmonary resuscitation or active compression-decompression cardiopulmonary resuscitation + impedance threshold device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app