Add like
Add dislike
Add to saved papers

Effects of autogenous growth factors on heterotopic bone formation of osteogenic cells in small animal model.

AIMS: This study used a new approach to investigate the effective concentrations of growth factors released from platelet concentrate (PC) on the bone formation capacity of osteogenically differentiated rat bone marrow stromal cells (rBMSCs).

MATERIALS AND METHODS: Rat BMSCs and whole blood were harvested from 40 adult male Spraque-Dawly rats. Rat BMSCs were expanded in an osteogenic medium and seeded on inert collagenous bovine bone matrix (ICBM). Growth factors released from degranulated PC (GFs) containing TGF-β1 1 (25ng/ml)-10ng (250ng/ml) and rhBMP-2 400ng (10μg/ml) were suspended in 40μl platelet poor plasma (PPP) and applied on the ICBM-rBMSC constructs or ICBM only, respectively. The constructs were then transplanted in autologous hosts for 4 weeks. Concurrently, osteoblastic differentiation of rBMSCs on ICBM-rBMSC-PPP constructs was characterized in vitro.

RESULTS: Rat BMSCs in osteogenic medium exhibited phenotypes of mature osteoblasts. The amount of newly formed bone among groups of ICBM-rBMSC-PPP with and without GFs was not significantly different (p>0.05) and was significantly lower than a group of ICBM-PPP-BMP-2 (p<0.05).

CONCLUSIONS: Autogenous GFs had no effect on the capacity of rBMSCs to form new bone. The ability to measure the bone formation capacity of transplanted autologous cells and growth factors in a small animal model was demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app