Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Factors controlling anterior torque during C-implant-dependent en-masse retraction without posterior appliances.

INTRODUCTION: Our objective was to evaluate the factors that affect effective torque control during en-masse incisor and canine retraction when using partially osseointegrated C-implants (Cimplant, Seoul, Korea) as the exclusive source of anchorage without posterior bonded or banded appliances.

METHODS: Base models were constructed from a dental study model. No brackets or bands were placed on the maxillary posterior dentition during retraction. The working archwire was modeled by using a 3-dimensional beam element (ANSYS beam 4, Swanson Analysis System, Canonsburg, Pa) with a cross section of 0.016 × 0.022-in stainless steel. Different heights of anterior retraction hooks and different degrees of gable bends were applied to the working utility archwire that was placed into the 0.8-mm diameter hole of the C-implant to generate anterior torque on the anterior segment of the teeth. The amount of tooth displacement after finite element analysis was exaggerated 70 times and compared with tooth-axis graphs of the central and lateral incisors and the canine.

RESULTS: The height of the anterior retraction hook and the degree of the gable bend had a combined effect on the labial crown torque applied to the incisors during en-masse retraction. By using 30° gable bends and the longest hook, lingual root movement of the 6 anterior teeth occurred. By using 20° gable bends, the 6 anterior teeth showed a translation tendency during retraction.

CONCLUSIONS: Three-dimensional en-masse retraction of the 6 anterior teeth can be accomplished by using partially osseointegrated C-implants as the only source of anchorage, gable bends, and a long retraction hook (biocreative therapy type I technique).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app