Cold water immersion recovery after simulated collision sport exercise

Monique Pointon, Rob Duffield
Medicine and Science in Sports and Exercise 2012, 44 (2): 206-16

PURPOSE: This investigation examined the effects of cold water immersion (CWI) recovery after simulated collision sport exercise.

METHODS: Ten male rugby athletes performed three sessions consisting of a 2 × 30-min intermittent-sprint exercise (ISE) protocol with either tackling (T) or no tackling (CONT), followed by a 20-min CWI intervention (TCWI) or passive recovery (TPASS and CONT) in a randomized order. The ISE consisted of a 15-m sprint every minute separated by self-paced bouts of hard running, jogging, and walking for the remainder of the minute. Every sixth rotation, participants performed 5 × 10-m runs, receiving a shoulder-led tackle to the lower body on each effort. Sprint time and distance covered during ISE were recorded, with voluntary (maximal voluntary contraction; MVC) and evoked neuromuscular function (voluntary activation; VA), electromyogram (root mean square (RMS)), ratings of perceived muscle soreness (MS), capillary and venous blood markers for metabolites and muscle damage, respectively measured before and after exercise, immediately after recovery, and 2 and 24 h after recovery.

RESULTS: Total distance covered during exercise was significantly greater in CONT (P = 0.01), without differences between TPASS and TCWI (P > 0.05). TCWI resulted in increased MVC, VA, and RMS immediately after recovery (P < 0.05). M-wave amplitude and peak twitch were significantly increased after recovery and 2 h after recovery, respectively, in TCWI (P < 0.05). Although TCWI had no effect on the elevation in blood markers for muscle damage (P > 0.05), lactate was significantly reduced after recovery compared with TPASS (P = 0.04). CWI also resulted in reduced MS 2 h after recovery compared with TPASS (P < 0.05).

CONCLUSIONS: The introduction of body contact reduces exercise performance, whereas the use of CWI results in a faster recovery of MVC, VA, and RMS and improves muscle contractile properties and perceptions of soreness after collision-based exercise.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"