Mass spectrometric characterization of urinary metabolites of the selective androgen receptor modulator S-22 to identify potential targets for routine doping controls

Mario Thevis, Andreas Thomas, Ines Möller, Hans Geyer, James T Dalton, Wilhelm Schänzer
Rapid Communications in Mass Spectrometry: RCM 2011 August 15, 25 (15): 2187-95
Drugs that promote anabolic processes with limited undesirable effects are of considerable therapeutic interest; some notable examples include those for the treatment of cancer cachexia and muscle-wasting diseases. Anabolic properties are not only therapeutically beneficial to critically ill and debilitated patients, but are also desirable to athletes seeking artificial enhancements in endurance, strength and accelerated recovery. The use of anabolic agents in the clinical setting is being reconsidered with the emergence of a new class of drugs referred to as SARMs (selective androgen receptor modulators). SARMs have the potential to complement or even replace anabolic androgenic steroidal use with the benefit of a reduction of the undesirable side effects associated with steroid administration alone. Arylpropionamide-based SARMs such as andarine (S-4) and S-22 have shown promising therapeutic properties and have attracted the interest of elite and amateur athletes despite the absence of clinical approval, and evidence for trafficking and misuse in sport has been obtained by doping control authorities. In this communication, the elucidation of urinary metabolites of the SARM drug candidate S-22 is compared with earlier in vitro metabolism studies. Following oral administration of illicit S-22, urine samples were collected after 62 and 135 h and analyzed for the active drug and its major metabolic products. Liquid chromatography interfaced with high-resolution/high-accuracy (tandem) mass spectrometry was used to identify and/or confirm the predicted target analytes for sports drug testing purposes. S-22 was detected in both specimens accompanied by its glucuronic acid conjugate. This was the B-ring hydroxylated derivative of S-22 plus the corresponding glucuronide (with the phase-II metabolites being the more abundant analytes). In addition, the samples collected 62 h post-administration also contained the phase-I metabolite hydroxylated at the methyl residue (C-20) and the B-ring depleted degradation product ('dephenylated' S-22) together with the corresponding carboxy analog that was previously reported for canine metabolism. The obtained data supports future efforts to effectively screen for and confirm the misuse of the non-approved S-22 drug candidate in doping controls.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"