JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions.

The environmental risks of antibiotics have attracted lots of research attention, but their environmental behavior is not clear yet. Functionalized carbon nanotubes (CNTs) were used as model adsorbents and sulfamethoxazole (SMX) was used as a model antibiotic to investigate the effect of both cations (Ca(2+), Cs(+)) and anions (phosphate) on antibiotics adsorption. Various mechanisms (such as electrostatic interaction, hydrophobic interaction, π-π and hydrogen bonds) play roles in SMX adsorption. Cations and anions could "wedge into" these mechanisms and thus alter SMX adsorption. This study emphasized that both increased and decreased SMX adsorption could be observed with the addition of cations/anions, depending on environmental conditions (such as pH in this current study). The net effect is the balance between the increased and decreased effects. The contribution of different mechanisms to the overall antibiotic adsorption on solid particles should be identified to accurately predict the apparent effect by cations and anions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app