Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nifedipine inhibits vascular smooth muscle cell proliferation and reactive oxygen species production through AMP-activated protein kinase signaling pathway.

The dihydropyridine calcium channel blocker nifedipine induces specific pharmacological effects by binding to L-type calcium channels, which results in a reduced calcium influx in vascular smooth muscle cells (VSMCs) and is currently employed in antihypertensive drug. Dihydropyridine calcium channel blocker is reported to reduce oxidative stress and exhibits anti-proliferative effect in VSMCs. VSMCs are useful in the study of atherosclerosis because they show cell proliferation and reactive oxygen species (ROS) production with growth factor. To determine the mechanisms involved in these effects, we investigated the influence of nifedipine-induced AMP-activated protein kinase (AMPK) activation on VSMC proliferation and ROS production by using rat aortic VSMCs in vitro and in vivo. Nifedipine induced phosphorylation of AMPK in a dose-and time-dependent manner, and inhibited rat VSMC proliferation and ROS production following stimulation with 15% fetal bovine serum (FBS). Nifedipine also blocked the FBS-stimulated cell cycle progression through the G0/G1 arrest. Compound C, a specific inhibitor of AMPK, or AMPK siRNA reduced the nifedipine-mediated inhibition of VSMC proliferation. As an upstream kinase, LKB1 is required for nifedipine-induced AMPK activation in VSMCs. 7 days oral administration of 1 mg/kg nifedipine resulted in activation of LKB1 and AMPK in vivo. These data suggest that nifedipine suppress the VSMC proliferation and ROS production via activating LKB1-AMPK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app