Add like
Add dislike
Add to saved papers

In vivo evaluation of the chemical composition of urinary stones using dual-energy CT.

OBJECTIVE: The purpose of this article is to evaluate in vivo the chemical composition of urinary stones using dual-source and dual-energy CT, with crystallography as the reference standard.

MATERIALS AND METHODS: Forty patients (mean [± SD] age, 49 ± 17 years) with known or suspected nephrolithiasis underwent unenhanced abdominal CT for urinary tract evaluation using a dual-energy technique (tube voltages, 140 and 80 kVp). For each stone 5 mm or larger in diameter, we evaluated the site, diameter, CT density, surface (smooth vs rough), and stone composition. Patients were treated with extracorporeal shock wave lithotripsy (n = 34), percutaneous nephrolithotomy (n = 4), or therapeutic ureterorenoscopy (n = 2). Collected stones underwent crystallography, and the agreement with the results of dual-energy CT was calculated with the Cohen kappa coefficient. The correlation among stone composition, diameter, and CT density was estimated using the Kruskal-Wallis test.

RESULTS: Thirty-one patients had a single stone and nine had multiple stones, for a total of 49 stones. Forty-five stones were in the kidneys, and four were in the ureters; 23 had a smooth surface and 26 had a rough surface. The mean stone diameter was 12 ± 6 mm; mean CT density was 783 ± 274 HU. According to crystallography, stone composition was as follows: 33 were calcium oxalate, seven were cystine, four were uric acid, and five were of mixed composition. Dual-energy CT failed to identify four stones with mixed composition, resulting in substantial agreement between dual-energy CT and crystallography (Cohen κ = 0.684). Stone composition was not correlated with either stone diameter (p = 0.920) or stone CT density (p = 0.185).

CONCLUSION: CT showed excellent accuracy in classifying urinary stone chemical composition, except for uric acid-hydroxyapatite mixed stones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app