Calculations for displacive ω-phase transformations in Ti-Al alloys with Nb additions at finite temperature

M Sanati, D West, R C Albers
Journal of Physics. Condensed Matter: An Institute of Physics Journal 2008 November 19, 20 (46): 465206
We examine by means of first-principles calculations the bcc-like (bcc: body centered cubic) to ω-like phase transformations in Ti-Al alloys with Nb additions at finite temperature. To simulate the alloy we use different discrete atomic configurations in a six atom unit cell of the stoichiometry Ti(3)Al(2)Nb. Calculated ground state energies show an instability in the ternary Ti(3)Al(2)Nb alloy against the ω structure type atomic displacement. To better understand the role of entropy in the stability/instability of these systems, the first-principles calculations are extended to finite temperature by including various contributions to the free energy. In particular, the vibrational free energy is calculated within a quasiharmonic approximation. It is shown that the bcc structure is stabilized by the contribution of the low energy modes to the lattice entropy against ω type atomic displacements. We find that configurational entropy plays a major role in the ω to B8(2) transformation. Calculated lattice parameters and transition temperatures are found to be in excellent agreement with experiment.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"