Add like
Add dislike
Add to saved papers

Calculations for displacive ω-phase transformations in Ti-Al alloys with Nb additions at finite temperature.

We examine by means of first-principles calculations the bcc-like (bcc: body centered cubic) to ω-like phase transformations in Ti-Al alloys with Nb additions at finite temperature. To simulate the alloy we use different discrete atomic configurations in a six atom unit cell of the stoichiometry Ti(3)Al(2)Nb. Calculated ground state energies show an instability in the ternary Ti(3)Al(2)Nb alloy against the ω structure type atomic displacement. To better understand the role of entropy in the stability/instability of these systems, the first-principles calculations are extended to finite temperature by including various contributions to the free energy. In particular, the vibrational free energy is calculated within a quasiharmonic approximation. It is shown that the bcc structure is stabilized by the contribution of the low energy modes to the lattice entropy against ω type atomic displacements. We find that configurational entropy plays a major role in the ω to B8(2) transformation. Calculated lattice parameters and transition temperatures are found to be in excellent agreement with experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app