JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice.

Drought stress is a major limiting factor for crop production and breeding for drought resistance is very challenging due to the complex nature of this trait. Previous studies in rice suggest that the upland japonica variety IRAT109 shows better drought resistance than the lowland indica variety Zhenshan 97. Numerous quantitative trait loci (QTL) have been previously mapped using a recombinant inbred line population derived from these two genotypes. In this study, near-isogenic lines (NILs) for 17 drought resistance-related QTL were constructed and phenotypic variations of these NILs were investigated under drought and normal conditions. Fourteen of these NILs showed significant phenotypic differences relative to the recurrent parent under at least one of the conditions and nine NILs showed significant differences under both conditions. After eliminating the effect of heading date on drought resistance, only four NILs carrying seven QTL (four for the same grain yield-related traits and three for the same or similar root traits QTL) showed differences consistent with the original QTL mapping results. One of these lines (N19) contains qFSR4, a QTL on chromosome 4 controlling root volume per tiller and co-segregating with flag leaf width and spikelet number per panicle. Using a population derived from N19, qFSR4 was mapped to a 38-kb region containing three open reading frames including the previously characterized NARROW LEAF 1 (NAL1) gene. NAL1, which controls leaf width and also affects vein patterning and polar auxin transport, is the most promising candidate genes for qFSR4. Our results underscore the importance of the development of NILs to confirm the identification of QTL affecting complex traits such as drought resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app