JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways.

Vascular endothelial growth factor C (VEGF-C) expression is associated with the malignant tumour phenotype making it an attractive therapeutic target. We investigated the biological roles of VEGF-C in tumour growth, migration, invasion and explored the possibility of VEGF-C as a potential therapeutic target for the treatment of non-small cell lung cancer (NSCLC). A lentivirus-mediated RNA interference (RNAi) technology was used to specifically knockdown the expression of VEGF-C in A549 cells. Quantitative reverse transcriptase-polymerase chain reaction, flow cytometry, Western blot, immunohistochemistry, cellular growth, migration, invasion and ELISA assays were used to characterise VEGF-C expression in vitro. A lung cancer xenograft model in nude mice was established to investigate whether knockdown of VEGF-C reduced tumour growth in vivo. Silencing of VEGF-C suppressed tumour cell growth, migration and invasion in vitro; suppressed tumour growth, angiogenesis and lymphangiogenesis by tail vein injection of lentivirus encoded shRNA against VEGF-C in vivo. More importantly, silencing of VEGF-C also trapped the VEGFR-2, VEGFR-3, CXCR4, CCR7-dependent axes, and down-regulated the AKT, ERK and p38 signalling pathways. These results suggest that VEGF-C has a multifaceted role in NSCLC growth, migration and invasion; that VEGF-C-mediated autocrine loops with their cognate receptors and chemokine receptors are significant factors affecting tumour progression; and that RNAi-mediated silencing of VEGF-C represents a powerful therapeutic approach for controlling NSCLC growth and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app