QM/MM nonadiabatic decay dynamics of 9H-adenine in aqueous solution

Zhenggang Lan, You Lu, Eduardo Fabiano, Walter Thiel
Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 2011 July 11, 12 (10): 1989-98
The photoinduced nonadiabatic decay dynamics of 9H-adenine (hereafter, adenine) in aqueous solution were investigated by surface-hopping simulations within a quantum mechanical/molecular mechanical (QM/MM) framework. The QM subsystem (adenine) was treated at the semiempirical OM2/MRCI level, whereas the MM solvent (water) was described by the TIP3P force field model. Classical molecular dynamics (MD) simulations were used to generate snapshots with different solvent configurations and geometries. For a representative number of these snapshots, the energy minima of the lowest electronic states and the most important conical intersections were located by QM/MM geometry optimization. Surface-hopping QM/MM MD simulations were performed for all selected snapshots to study the nonadiabatic dynamics after photoexcitation, including the two lowest excited singlet states, which are both populated in the initial photoexcitation due to strong vibronic coupling in the Franck-Condon region. The simulations yield ultrafast S(2)-S(1) decay within 40 fs and S(1)-S(0) internal conversion to the ground state within 410 fs, which is consistent with recent experimental results from time-resolved spectroscopy.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"