OPEN IN READ APP
JOURNAL ARTICLE

Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana

Atsushi Kunihiro, Takafumi Yamashino, Norihito Nakamichi, Yusuke Niwa, Hanayo Nakanishi, Takeshi Mizuno
Plant & Cell Physiology 2011, 52 (8): 1315-29
21666227
The plant circadian clock generates rhythms with a period close to 24 h, and it controls a wide variety of physiological and developmental events. Among clock-controlled developmental events, the best characterized is the photoperiodic control of flowering time, which is mediated through the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway in Arabidopsis thaliana. The clock also regulates the diurnal plant growth including the elongation of hypocotyls in a short day (SDs)-specific manner. In this mechanism, phytochromes (mainly phyB) and the PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, encoding phytochrome-interacting basic helix-loop-helix (bHLH) transcription factors, play crucial roles. The time of day-specific and photoperiodic control of hypocotyl elongation is best explained by the accumulation of the PIF4 and PIF5 proteins during night-time before dawn, especially under SDs, due to coincidence between the internal (circadian rhythm) and external (photoperiod) time cues. However, the PIF4- and/or PIF5-controlled downstream factors have not yet been identified. Here, we provide evidence that ARABIDOPSIS THALIANA HOMEOBOX PROTEIN2 (ATHB2), together with auxin-inducible IAA29, is diurnally expressed with a peak at dawn under the control of PIF4 and PIF5 specifically in SDs. This coincidentally expressed transcription factor serves as a positive regulator for the elongation of hypocotyls. The expression profiles of ATHB2 were markedly altered in certain clock and phytochrome mutants, all of which show anomalous phenotypes with regard to the photoperiodic control of hypocotyl elongation. Taken together, we propose that an external coincidence model involving the clock-controlled PIF4/PIF5-ATHB2 pathway is crucial for the diurnal and photoperiodic control of plant growth in A. thaliana.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
21666227
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"