JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In situ infrared monitoring of the solid/liquid catalyst interface during the three-phase hydrogenation of nitrobenzene over nanosized Au on TiO2.

The three-phase hydrogenation of nitrobenzene catalysed by nanosized gold over titania was investigated in a slurry. Simultaneous in situ ATR-FTIR monitoring of the liquid phase and at the solid/liquid catalyst interface identified the species adsorbed on the catalyst and those in the liquid phase during the reaction. Nitrosobenzene was not detected analytically while the spectroscopic measurements strongly indicated phenylhydroxylamine as an intermediate reacting before desorbing from the catalyst surface. Under the same reaction conditions, azobenzene and hydrazobenzene were identified as intermediates during the hydrogenation of azoxybenzene to aniline. When nitrosobenzene or phenylhydroxylamine was alternately fed as reactant, azoxybenzene was produced via a disproportionation route. With the former, azoxybenzene was not further reduced by hydrogen because nitrosobenzene deactivated the catalyst. Combined with H(2) uptake, the spectroscopic measurements provided new insights into the reaction mechanism of the gold catalysed hydrogenation of nitrobenzene and an update of the corresponding kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app