Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems.

This brief studies an adaptive neural output feedback tracking control of uncertain nonlinear multi-input-multi-output (MIMO) systems in the discrete-time form. The considered MIMO systems are composed of n subsystems with the couplings of inputs and states among subsystems. In order to solve the noncausal problem and decouple the couplings, it needs to transform the systems into a predictor form. The higher order neural networks are utilized to approximate the desired controllers. By using Lyapunov analysis, it is proven that all the signals in the closed-loop system is the semi-globally uniformly ultimately bounded and the output errors converge to a compact set. In contrast to the existing results, the advantage of the scheme is that the number of the adjustable parameters is highly reduced. The effectiveness of the scheme is verified by a simulation example.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app