Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PTEN reconstitution alters glioma responses to c-Met pathway inhibition.

Anti-cancer Drugs 2011 October
Mutations/deletions of the tumor-suppressor phosphatase and tensin homolog PTEN result in PI3K/Akt pathway hyperactivation and potentially alter oncogenic responses to targeted receptor tyrosine kinase inhibitors. We previously showed that hepatocyte growth factor (HGF):c-Met pathway inhibition decreases tumor growth and oncogenic signaling responses in PTEN-null/Met+ gliomas. Here, we use two tet-on PTENwt-inducible glioma cell lines and xenograft models to examine the influence of PTEN on oncogenic signaling responses to HGF:c-Met pathway inhibitors. Reconstitution of PTEN inhibited Akt by more than 80% and inhibited cell growth by approximately 70-75% in both cell lines in vitro. C-Met inhibition alone inhibited in-vitro cell growth by approximately 80-85% and the magnitude of growth inhibition was not altered by combining PTEN reconstitution with c-Met inhibition. Combining PTEN reconstitution with Met inhibition arrested a higher percentage of cells in G(1)/G(0) phase of the cell cycle when compared with either PTEN reconstitution or c-Met inhibition alone. Both PTEN reconstitution alone and inhibiting autocrine HGF:c-Met signaling alone, using anti-HGF mAb, robustly inhibited the growth of subcutaneous and intracranial glioma xenografts. Combining anti-HGF therapy with PTEN reconstitution did not significantly alter the magnitude of xenograft growth inhibition. Semiquantitative immunohistopathological analyses revealed that the inhibition of glioma xenograft angiogenesis and cell proliferation by anti-HGF mAb was greatest in conjunction with PTEN reconstitution. In contrast, xenograft cell apoptosis was greatest in response to anti-HGF therapy alone and PTEN reconstitution abrogated the apoptotic response to anti-HGF therapy. These results provide new insights into how PTEN modulates glioma responses to the inhibition of HGF:c-Met signaling and possibly other receptor tyrosine kinase pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app