COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of the multipotent character of human adipose tissue-derived stem cells isolated by Ficoll gradient centrifugation and red blood cell lysis treatment.

In the present study, the multipotent potential of two differential isolated human adipose-derived stem cell (hADSC) populations was evaluated. More specifically, hADSC isolated by means of classical Ficoll (F) gradient centrifugation were compared to hADSC isolated by means of red blood cell (RBC) lysis treatment and subsequent cultivation as 3D spheres. No significant difference in the genotypic expression of the multipotent markers Oct-4, Sox-2, Nanog, Klf-4 and cMyc could be observed between both isolation methods. Upon adipogenic and osteogenic differentiation, both hADSC populations showed lipid droplet accumulation and mineral deposition, respectively. Although, a more pronounced mineral deposition was observed in hADSC-RBC, suggesting a higher osteogenic potential. Upon exposure to keratinogenic media, both hADSC populations expressed the keratinocyte markers filaggrin and involucrin, evidencing a successful keratinogenic differentiation. Yet, no differences in expression were observed between the distinctive isolation procedures. Finally, upon exposure to neurogenic differentiation media, a significant difference in marker expression was observed. Indeed, hADSC-RBC only expressed vimentin and nestin, whereas hADSC-F expressed vimentin, nestin, NF-200, MBP and TH, suggesting a higher neurogenic potential. In summary, our data suggest that the choice of the most efficient isolation procedure of hADSC depends on the differentiated cell type ultimately required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app