Add like
Add dislike
Add to saved papers

Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction.

To achieve the applications of graphene, the modulation of its electrical properties is of great significance. The element doping might give a promising approach to produce fascinating properties of graphene. Herein we report a facile chemical doping method to obtain nitrogen-doped (N-doped) few-layer graphene sheets through supercritical (SC) reaction in acetonitrile at temperature as low as 310 °C, using expanded graphite as starting material. X-ray photoelectron spectroscopy analysis revealed that the level of nitrogen-doping (N-doping) increased from 1.57 to 4.56 at % when the reaction time was tuned from 2 to 24 h. Raman spectrum confirmed that the resulting N-doped few-layer graphene by SC reaction maintain high quality without any significant structural defects. Electrical measurements indicated that N-doped few-layer graphene sheets exhibit a typical n-type field-dependent behavior, suggesting the N-doping into the lattice of graphene. This work provides a convenient chemical route to the scalable production of N-doped graphene for potential applications in nanoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app