Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Role of TGFbeta/Smad signaling in gremlin induction of human trabecular meshwork extracellular matrix proteins.

PURPOSE: The bone morphogenic protein (BMP) antagonist gremlin is elevated in glaucomatous trabecular meshwork (TM) cells and tissues and elevates intraocular pressure (IOP). Gremlin also blocks BMP4 inhibition of transforming growth factor (TGF)-β2 induction of TM extracellular matrix (ECM) proteins. The purpose of this study was to determine whether Gremlin regulates ECM proteins in cultured human TM cells.

METHODS: Human TM cells were treated with recombinant gremlin to determine the effects on ECM gene and protein expression. Expression of the ECM genes FN, COL1, PAI1, and ELN was examined in cultured human TM cells by quantitative RT-PCR and Western immunoblot analysis. TM cells were pretreated with TGFBR inhibitors (LY364947, SB431542 or TGFBR1/TGFB2 siRNAs), inhibitors of the Smad signaling pathway (SIS3 or Smad2/3/4 siRNAs), or CTGF siRNA to identify the signaling pathway(s) involved in gremlin induction of ECM gene and protein expression.

RESULTS: All ECM genes analyzed (FN, COL1, PAI1, and ELN) were induced by gremlin. This gremlin induction of ECM genes and protein expression was blocked by inhibitors of TGFBR and the canonical Smad2/3/4 and CTGF signaling pathways.

CONCLUSIONS: Gremlin employs canonical TGFβ2/Smad signaling to induce ECM genes and proteins in cultured human TM cells. Gremlin also induces both TGFβ2 and CTGF, which can act downstream to mediate some of these ECM changes in TM cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app