Add like
Add dislike
Add to saved papers

Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening.

Plant Cell 2011 June
After-ripening is the mechanism by which dormant seeds become nondormant during their dry storage after harvest. The absence of free water in mature seeds does not allow detectable metabolism; thus, the processes associated with dormancy release under these conditions are largely unknown. We show here that sunflower (Helianthus annuus) seed alleviation of dormancy during after-ripening is associated with mRNA oxidation and that this oxidation is prevented when seeds are maintained dormant. In vitro approaches demonstrate that mRNA oxidation results in artifacts in cDNA-amplified fragment length polymorphim analysis and alters protein translation. The oxidation of transcripts is not random but selective, and, using microarrays, we identified 24 stored mRNAs that became highly oxidized during after-ripening. Oxidized transcripts mainly correspond to genes involved in responses to stress and in cell signaling. Among them, protein phosphatase 2C PPH1, mitogen-activated protein kinase phosphatase 1, and phenyl ammonia lyase 1 were identified. We propose that targeted mRNA oxidation during dry after-ripening of dormant seeds could be a process that governs cell signaling toward germination in the early steps of seed imbibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app