JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Exercise as a beneficial adjunct therapy during Doxorubicin treatment--role of mitochondria in cardioprotection.

One of the mostly used chemotherapeutic drugs is the highly effective anthracycline Doxorubicin. However, its clinical use is limited by the dose-related and cumulative cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this toxicity is related to mitochondrial dysfunction. The present review aimed to analyze the promising results regarding the effect of several types of physical exercise in cardiac tolerance of animals treated with acute and sub-chronic doses of Doxorubicin (DOX), highlighting the importance of cardiac mitochondrial-related mechanisms in the process. Physical exercise positively modulates some important cardiac defense systems to antagonize the toxic effects caused by DOX treatment, including antioxidant capacity, the overexpression of heat shock proteins and other anti-apoptotic proteins. An important role in this protective phenotype afforded by exercise should be attributed to mitochondrial plasticity, as related adaptations could be translated into improved cardiac function in the setting of the DOX cardiomyopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app