Add like
Add dislike
Add to saved papers

In vitro models for adipose tissue engineering with adipose-derived stem cells using different scaffolds of natural origin.

Soft tissue regeneration with cell and tissue engineering-based approaches has numerous potential applications in plastic and reconstructive surgery. Adipose-derived stem cells (ASC) have been proved as a feasible source for adipose tissue engineering as they possess high proliferative and differentiation capacity. The purpose of our study was to evaluate adipogenic differentiation of human ASC in four different 3D scaffolds of natural origin, namely human platelet-poor plasma, alginate, fibrin gel and collagen sponge, to define their suitability for adipose tissue engineering and potential clinical applications. ASC were isolated from lipoaspirates of three adult female patients, seeded in the scaffolds, and adipogenic differentiation was induced. After two weeks of cultivation, the constructs were assessed for their mechanical and handling properties, cell viability and adipogenic differentiation. Additionally, the expression of vascular endothelial growth factor (VEGF) was analysed in different culture systems. The results indicate that the levels of specific adipogenic markers and VEGF expression were increased in 3D cultures, as compared to 2D culture. Among 3D scaffolds, fibrin gel showed optimal combination of mechanical characteristics and support of adipogenic differentiation; it was easy to handle, allowed high cell viability, and at the same time supported adipogenic differentiation and VEGF expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app