English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Effects of soybean isoflavone on liver lipid metabolism in nonalcoholic fatty liver rats].

OBJECTIVE: To study the effects of soybean isoflavone on liver lipid, serum lipid, antioxidant index and hepatic lipid metabolism associated factors in nonalcoholic fatty liver rats.

METHODS: Thirty-six male rats (SD) were randomly divided into four groups by weight: normal control group, nonalcoholic fatty liver disease (NAFLD) model control group, low-dose isoflavone treatment group (10 mg/kg) and high-dose isoflavone group (20 mg/kg), 9 rats in each group. Normal control rats were fed with D12450B (10% fat energy), model control and isoflavone intervention rats were fed with D12492 (60% fat energy). Twelve weeks later, liver lipid, serum lipid and antioxidant index were observed. Liver sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS) and peroxisome proliferators activated receptor alpha (PPAR alpha) were detected by western blotting.

RESULTS: Liver triglyceride (TG) in normal control group, NAFLD model control group, low-dose isoflavone group and high-dose isoflavone group were (8.11 ± 4.13), (57.06 ± 16.95), (31.26 ± 10.48), (31.38 ± 13.25) mmol/mg protein, respectively (F = 22.569, P < 0.01); liver free fatty acid (FFA) were (0.030 ± 0.007), (0.042 ± 0.009), (0.038 ± 0.009), (0.032 ± 0.005) µmol/mg protein, respectively (F = 4.857, P < 0.01); liver superoxide dismutase (SOD) activity were (502.29 ± 23.71), (201.83 ± 16.99), (228.93 ± 21.71), (238.08 ± 15.96) U/mg protein, respectively (F = 9.555, P < 0.01); liver malondialdehyde (MDA) were (1.29 ± 0.29), (2.85 ± 0.73), (2.07 ± 0.49), (2.03 ± 0.37) nmol/mg protein, respectively (F = 13.449, P < 0.01); SREBP-1c protein expression were 0.45 ± 0.16, 1.42 ± 0.30, 1.02 ± 0.31, 0.47 ± 0.27, respectively (F = 24.515, P < 0.01); FAS protein expression were 0.27 ± 0.08, 1.97 ± 0.47, 1.35 ± 0.30, 0.49 ± 0.12, respectively (F = 60.361, P < 0.01); PPARα protein expression were 2.03 ± 0.56, 0.41 ± 0.17, 0.81 ± 0.27, 0.66 ± 0.16, respectively (F = 37.97, P < 0.01).

CONCLUSION: Soy isoflavone can reduce the hepatic lipid deposition and increase antioxidant capacity, the mechanism may be related to inhibition of SREBP-1c and activation of PPARα expression in liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app