JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK).

Activation of the intrinsic apoptotic pathway represents a major mechanism for breast cancer regression resulting from anti-estrogen therapy. The BH3-only protein BIK is inducible by estrogen-starvation and anti-estrogen treatment and plays an important role in anti-estrogen induced apoptosis of breast cancer cells. BIK is predominantly localized to the endoplasmic reticulum where it regulates BAX/BAK-dependent release of Ca(2+) from the endoplasmic reticulum stores and cooperates with other BH3-only proteins such as NOXA to cause rapid release of cytochrome c from mitochondria and activate apoptosis. BIK is also known to inactivate BCL-2 through complex formation. Previously, we demonstrated that apoptosis triggered by BIK in estrogen-starved human breast cancer cells is suppressed by GRP78, a major endoplasmic reticulum chaperone. Here we described the isolation of a novel clonal human breast cancer cell line (MCF-7/BUS-10) resistant to long-term estrogen deprivation. These cells exhibit elevated level of GRP78, which protects them from estrogen starvation-induced apoptosis. Our studies revealed that overexpression of GRP78 suppresses apoptosis induced by BIK and NOXA, either alone or in combination. Surprisingly, the interaction of GRP78 with BIK does not require its BH3 domain, which has been implicated in all previous BIK protein interactions. We further showed GRP78 and BCL-2 form independent complex with BIK and that increased expression of GRP78 decreases BIK binding to BCL-2. Our findings provide the first evidence that GRP78 can decrease BCL-2 sequestration by BIK at the endoplasmic reticulum, thus uncovering a potential new mechanism whereby GRP78 confers endocrine resistance in breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app