JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

BJ-B11, a novel Hsp90 inhibitor, induces apoptosis in human chronic myeloid leukemia K562 cells through the mitochondria-dependent pathway.

In the past few years heat shock protein 90 (Hsp90) inhibitors have been reported to possess significant antitumor activity. We investigated, for the first time, the antitumor activity of a novel Hsp90 inhibitor 2-(4-acetyloxycyclohexylamino)-4-(3, 6, 6-trimethyl-4-oxo-4, 5, 6, 7-tetrahydro-1H-indazol-1-yl)-benzamide (BJ-B11) and the molecular mechanism underlying the apoptosis it induces in human chronic myeloid leukemia K562 cells. The results revealed that BJ-B11 triggered growth inhibition in K562 cells and other malignant cell lines in vitro with only minor toxicity in a normal human cell line. BJ-B11 inhibited the proliferation of K562 cells in a concentration- and time-dependent manner, with IC(50) values of 1.1 ± 0.2 μM and 0.4 ± 0.1 μM after 48 and 72 h incubations respectively. This most likely results from cell cycle arrest at the G(0)/G(1) phase and the induction of apoptosis. In addition, BJ-B11 degraded the Hsp90 client proteins Bcr-Abl and Akt, induced activation of caspase-9 and caspase-3, and subsequent cleavage of PARP. The caspase signals may originate from mitochondrial dysfunction, which is supported by the finding of cytochrome c release. In addition, inactivation of the Akt signaling pathway may be involved in the process of BJ-B11-induced apoptosis. Taken together, our data provide a putative molecular mechanism for the anticancer effect of BJ-B11 on K562 cells, and suggest a potential application for BJ-B11 in chronic myeloid leukemia therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app