JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Effect of concentration on the accuracy of convective imaging distribution of a gadolinium-based surrogate tracer.

OBJECT: Accurate real-time imaging of coinfused surrogate tracers can be used to determine the convective distribution of therapeutic agents. To assess the effect that a concentration of a Gd-based surrogate tracer has on the accuracy of determining the convective distribution, the authors infused different concentrations of Gd-diethylenetriamine pentaacetic acid (DTPA) in primates during MR imaging.

METHODS: Five nonhuman primates underwent convective infusion (1 or 5 mM, 21-65 μl) of Gd-DTPA alone, Gd-DTPA and (14)C-sucrose, or Gd-DTPA and (14)C-dextran into the bilateral striata. Animals underwent real-time MR imaging during infusion (5 animals) and autoradiographic analysis (2 animals).

RESULTS: Gadolinium-DTPA could be seen filling the striata at either concentration (1 or 5 mM) on real-time MR imaging. While the volume of distribution (Vd) increased linearly with the volume of infusion (Vi) for both concentrations of tracer (1 mM: R(2) = 0.83; 5 mM: R(2) = 0.96), the Vd/Vi ratio was significantly (p < 0.0001) less for the 1-mM (2.3 ± 1.0) as compared with the 5-mM (7.4 ± 1.9) concentration. Autoradiographic and MR volumetric analysis revealed that the 5-mM concentration most accurately estimated the Vd for both small (sucrose [359 D], 12% difference between imaging and autoradiographic distribution) and large (dextran [70 kD], 0.2% difference) molecules compared with the 1-mM concentration (sucrose, 65% difference; dextran, 68% difference).

CONCLUSIONS: The concentration of infused Gd-DTPA plays a critical role in accurately assessing the distribution of molecules delivered by CED. A 5-mM concentration of Gd-DTPA most accurately estimated the Vd over a wide range of molecular sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app