JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Soil microbes drive the classic plant diversity-productivity pattern.

Ecology 2011 Februrary
Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species loss. Previous studies attributed the asymptotic diversity-productivity pattern to plant competition and differential resource use (e.g., niche complementarity). Using an analytical model and a series of experiments, we demonstrate theoretically and empirically that host-specific soil microbes can be major determinants of the diversity-productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500%, primarily because of the strong effect of density-dependent disease on productivity at low diversity. Correspondingly, disease was higher in plants grown in conspecific-trained soils than heterospecific-trained soils (demonstrating host-specificity), and productivity increased and host-specific disease decreased with increasing community diversity, suggesting that disease was the primary cause of reduced productivity in species-poor treatments. In sterilized, microbe-free soils, the increase in productivity with increasing plant species number was markedly lower than the increase measured in the presence of soil microbes, suggesting that niche complementarity was a weaker determinant of the diversity-productivity relationship. Our results demonstrate that soil microbes play an integral role as determinants of the diversity-productivity relationship.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app