Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells.

Experimental evidence from human patients and animal models of diabetes has demonstrated that hyperglycemia increases blood-brain barrier (BBB) permeability, which is associated with increased risk of neurological dysfunction. However, the mechanism underlying high glucose-induced BBB disruption is not understood. Here we investigated the role of hypoxia-inducible factor-1 (HIF-1) in high glucose-induced endothelial permeability in vitro using mouse brain microvascular endothelial cells (b.End3). Our results demonstrated that high glucose (30 mM) upregulated the protein level of HIF-1α, the regulatable subunit of HIF-1, and increased the transcriptional activity of HIF-1 in the endothelial cells. At the same time, high glucose increased the paracellular permeability associated with diminished expression and disrupted continuity of tight junction proteins occludin and zona occludens protein-1 (ZO-1) of the endothelial cells. Upregulating HIF-1 activity by cobalt chloride increased the paracellular permeability of the endothelial cells exposed to normal glucose (5.5 mM). In contrast, downregulating HIF-1 activity by HIF-1α inhibitors and HIF-1α specific siRNA ameliorated the increased paracellular permeability and the alterations of distribution pattern of occludin and ZO-1 induced by high glucose. In addition, high glucose increased expression of vascular endothelial growth factor (VEGF), a downstream gene of HIF-1. Inhibiting VEGF improved the expression pattern of occludin and ZO-1, and attenuated the endothelial leakage. Furthermore, key results were confirmed in human brain microvascular endothelial cells. These results strongly indicate that HIF-1 plays an important role in high glucose-induced BBB dysfunction. The results will help us understand the molecular mechanisms involved in hyperglycemia-induced BBB dysfunction and neurological outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app