Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition.

Xenorhabdus nematophila, the mutualistic bacterium of the nematode Steinernema carpocapsae, produces the R-type bacteriocin called xenorhabdicin, which is thought to confer a competitive advantage for growth in the insect host. We have identified a P2-like tail synthesis gene cluster (xnp1) that is required for xenorhabdicin production. The xnp1 genes were expressed constitutively during growth and were induced by mitomycin C. Deletion of either the sheath (xnpS1) or fiber (xnpH1) genes eliminated xenorhabdicin production. Production of R-type bacteriocins in a host organism had not been shown previously. We show that xenorhabdicin is produced in the hemocoel of insects infected with the wild type but not with the ΔxnpS1 deletion strain. Xenorhabdicin prepared from the wild-type strain killed the potential competitor Photorhabdus luminescens TT01. P. luminescens was eliminated during coculture with wild-type X. nematophila but not with the ΔxnpS1 strain. Furthermore, P. luminescens inhibited reproduction of S. carpocapsae in insect larvae, while coinjection with wild-type X. nematophila, but not the ΔxnpS1, strain restored normal reproduction, demonstrating that xenorhabdicin was required for killing P. luminescens and protecting the nematode partner. Xenorhabdicin killed X. nematophila from Steinernema anatoliense, demonstrating for the first time that it possesses intraspecies activity. In addition, activity was variable against diverse strains of Xenorhabdus and Photorhabdus and was not correlated with phylogenetic distance. These findings are discussed in the context of the role of xenorhabdicin in the life cycle of the mutualistic bacterium X. nematophila.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app