JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Photoinduced singlet charge transfer in a ruthenium(II) perylene-3,4:9,10-bis(dicarboximide) complex.

Elucidation of photoinduced charge transfer behavior in organic dye/metal hybrids is important for developing photocatalytic systems for solar energy conversion. We report the synthesis and photophysical characterization of a perylene-3,4:9,10-bis(dicarboximide) (PDI)-ruthenium(II) complex, bis-PDI-2,2'-bipyridineRu(II)Cl(2)(CN(t)butyl)(2), which has favorable energetics, ΔG(CS) ≈ -1.0 eV, for singlet electron transfer from the Ru complex to PDI. Time-resolved optical spectroscopy reveals that upon selective photoexcitation of PDI, ultrafast charge transfer (<150 fs) from the Ru complex to (1*)PDI generates the Ru(III)-PDI(-•) ion pair. The resulting vibrationally hot Ru(III)-PDI(-•) ion pair exhibits fast relaxation (τ = 3.9 ps) and charge recombination (τ(CR) = 63 ps). Our experimental and computational (DFT and TDDFT) studies show that energy-preserving photodriven singlet electron transfer can dominate in properly designed organic dye/metal complexes, making them of particular interest for use in artificial photosynthetic systems for solar fuels formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app