JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder.

Several lines of evidence indicate that dysfunction of serotonin signaling and HTR2A receptor are involved in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BD). DNA methylation of HTR2A at T102C polymorphic site influences HTR2A expression and aberrant DNA methylation of HTR2A promoter was reported in postmortem brain of patients with SCZ and BD. Hypothesizing that the brain's epigenetic alteration of HTR2A may also exist in peripheral tissues that can be used as a diagnostic/therapeutic biomarker, we analyzed HTR2A promoter DNA methylation in DNA extracted from the saliva of patients with SCZ and BD, and their first degree relatives versus normal controls. Bisulfite sequencing was used to screen DNA methylation status of the HTR2A promoter CpGs and qMSP was used to quantify the degree of cytosine methylation at differentially methylated sites. Most of the cytosines of the HTR2A promoter were unmethylated. However, CpGs of the -1438A/G polymorphism site, -1420 and -1223 were >95% methylated. The CpG at T102C polymorphic site and neighboring CpGs were ∼70% methylated both in the patients and controls. qMSP analysis revealed that the cytosine of the T102C polymorphic site was significantly hypo-methylated in SCZ, BD, and their first degree relatives compared to the controls. Cytosine methylation of HTR2A at T102C polymorphic site in DNA derived from the saliva can potentially be used as a diagnostic, prognostic, and/or therapeutic biomarker in SCZ and BD. However, these preliminary observations need to be replicated in other populations with a larger sample size to be considered for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app