JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river.

In this study, the biodegradation of sulfamethoxazole (SMX) as affected by temperature, humic acid (HA) and SMX concentrations was investigated by HPLC-MS/MS analysis based on water-sediment batch experiments. The first order decay model (C=C(0) × exp (-kt)) was best fitted for SMX biodegradation. SMX degradation significantly increased with elevated temperature (degradation rate was 82.9% at 25°C vs. 40.5% at 4°C in sediment), HA contents (30 mg/L of HA facilitated SMX degradation rate at 90.1% vs. 82.9% by 5mg/L of HA). However, SMX degradation is not readily dependent on its initial concentrations (1, 2, 20, 50 and 100mg/L), which suggests a co-metabolism mechanism may involove in SMX biodegradation. The prevalence of Bacillus firmus and Bacillus cereus among the strains isolated and identified on the basis of 16s rDNA gene sequence implicates their potential efficiency at degrading SMX. Only less than 1% of the SMX was transformed into its metabolite N(4)-acetyl-sulfamethoxazole, suggesting the need to pay more attention to the parent SMX. Overall, the ubiquitous occurrence of SMX underscores the need to explore better solutions for its removal and to mitigate this risk to public health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app