JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

BMP-2 suppresses renal interstitial fibrosis by regulating epithelial-mesenchymal transition.

Dysregulation of epithelial-to-mesenchymal transition (EMT) may contribute to renal fibrogenesis. Our previous study indicated that bone morphogenetic protein-2 (BMP-2) significantly reversed transforming growth factor (TGF)-β1-induced renal interstitial fibrosis. In this study, we examined the underlying mechanism and elucidate the regulation of EMT process under BMP-2 treatment. Cultured renal interstitial fibroblast (NRK-49F) was treated with TGF-β1 (10 ng/ml) with or without BMP-2 (10-250 ng/ml) for 24 h. The expression of α-smooth muscle actin (α-SMA), E-cadherin, fibronectin, or Snail transcriptional factors was analyzed by immunofluorescence staining or Western blotting. Cell migration was analyzed by wound-healing assay. NRK-49F treated with TGF-β1 induced significant EMT including upregulatioin of α-SMA, fibronectin, and snail proteins and down-regulation of E-cadherin. Interestingly, co-treatment with BMP-2 dose-dependently reversed TGF-β1-induced cellular fibrosis, cell migration, and above EMT change. The above effect was closely correlated with Snail since BMP-2 dose- and time-course dependently induced a significant decrease in the level of Snail. Moreover, Snail siRNA significantly reversed TGF-β1-induced increases in the level of α-SMA and fibronectin (intracellular and extracellular). We suppose that BMP-2 have the potential to attenuate TGF-β1-induced renal interstitial fibrosis by attenuating Snail expression and reversing EMT process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app