JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mathematical modeling for prediction of survival from resuscitation based on computerized continuous capnography: proof of concept.

OBJECTIVES: The objective was to describe a new method of studying correlations between real-time end tidal carbon dioxide (ETCO(2) ) data and resuscitation outcomes.

METHODS: This was a prospective cohort study of 30 patients who underwent cardiopulmonary resuscitation (CPR) in a university hospital. Sidestream capnograph data were collected during CPR and analyzed by a mathematician blinded to patient outcome. The primary outcome measure was to determine whether a meaningful relationship could be drawn between detailed computerized ETCO(2) characteristics and the return of spontaneous circulation (ROSC). Significance testing was performed for proof-of-concept purposes only.

RESULTS: Median patient age was 74 years (interquartile range [IQR] = 60-80 years; range = 16-92 years). Events were mostly witnessed (63%), with a median call-to-arrival time of 150 seconds (IQR = 105-255 seconds; range = 60-300 seconds). The incidence of ROSC was 57% (17 of 30), and of hospital discharge 20% (six of 30). Ten minutes after intubation, patients with ROSC had higher peak ETCO(2) values (p = 0.035), larger areas under the ETCO(2) curve (p = 0.016), and rising ETCO(2) slopes versus flat or falling slopes (p = 0.016) when compared to patients without ROSC. Cumulative maxETCO(2) > 20 mm Hg at all time points measured between 5 and 10 minutes postintubation best predicted ROSC (sensitivity = 0.88; specificity = 0.77; p < 0.001). Mathematical modeling targeted toward avoiding misdiagnosis of patients with recovery potential (fixed condition, false-negative rate = 0) demonstrated that cumulative maxETCO(2) (at 5-10 minutes) > 25 mm Hg or a slope greater than 0 measured between 0 and 8 minutes correctly predicted patient outcome in 70% of cases within less than 10 minutes of intubation.

CONCLUSIONS: This preliminary study suggests that computerized ETCO(2) carries potential as a tool for early, real-time decision-making during some resuscitations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app