Add like
Add dislike
Add to saved papers

A highly porous metal-organic framework: structural transformations of a guest-free MOF depending on activation method and temperature.

A doubly interpenetrating porous metal-organic framework (SNU-77) has been synthesized from the solvothermal reaction of the extended carboxylic acid tris(4'-carboxybiphenyl)amine (H(3)TCBPA) and Zn(NO(3))(2)⋅6H(2)O in N,N-dimethylacetamide (DMA). SNU-77 undergoes single-crystal-to-single-crystal transformations during various activation processes, such as room-temperature evacuation, supercritical CO(2) drying, and high temperature evacuation, to afford SNU-77R, SNU-77S, and SNU-77H, respectively. These guest-free MOFs exhibited different fine structures with different window shapes and different effective window sizes at room temperature. Variable-temperature synchrotron single-crystal X-ray analyses reveal that the guest-free structure is also affected by changes in temperature. Despite the different fine structures, SNU-77R, SNU-77S, and SNU-77H show similar gas sorption properties due to the nonbreathing nature of the framework and an additional structural change upon cooling to cryogenic gas sorption temperature. SNU-77H exhibits a large surface area (BET, 3670 m(2)  g(-1)), a large pore volume (1.52 cm(3)  g(-1)), and exceptionally high uptake capacities for N(2), H(2), O(2), CO(2), and CH(4) gases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app