COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Reliability of the assessment of lower limb torsion using computed tomography: analysis of five different techniques.

OBJECTIVE: Various methods have been described to define the femoral neck and distal tibial axes based on a single CT image. The most popular are the Hernandez and Weiner methods for defining the femoral neck axis and the Jend, Ulm, and bimalleolar methods for defining the distal tibial axis. The purpose of this study was to calculate the intra- and interobserver reliability of the above methods and to determine intermethod differences.

METHODS: Three physicians separately measured the rotational profile of 44 patients using CT examinations on two different occasions. The average age of patients was 36.3 ± 14.4 years, and there were 25 male and 19 female patients. After completing the first two sessions of measurements, one observer chose certain cuts at the levels of the femoral neck, femoral condylar area, tibial plateau, and distal tibia. The three physicians then repeated all measurements using these CT cuts.

RESULTS: The greatest interclass correlation coefficients were achieved with the Hernandez (0.99 intra- and 0.93 interobserver correlations) and bimalleolar methods (0.99 intra- and 0.92 interobserver correlations) for measuring the femoral neck and distal tibia axes, respectively. A statistically significant decrease in the interobserver median absolute differences could be achieved through the use of predefined CT scans only for measurements of the femoral condylar axis and the distal tibial axis using the Ulm method. The bimalleolar axis method underestimated the tibial torsion angle by an average of 4.8° and 13° compared to the Ulm and Jend techniques, respectively.

CONCLUSIONS: The methods with the greatest inter- and intraobserver reliabilities were the Hernandez and bimalleolar methods for measuring femoral anteversion and tibial torsion, respectively. The high intermethod differences make it difficult to compare measurements made with different methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app