Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Application of the Bayesian MMSE estimator for classification error to gene expression microarray data.

Bioinformatics 2011 July 2
MOTIVATION: With the development of high-throughput genomic and proteomic technologies, coupled with the inherent difficulties in obtaining large samples, biomedicine faces difficult small-sample classification issues, in particular, error estimation. Most popular error estimation methods are motivated by intuition rather than mathematical inference. A recently proposed error estimator based on Bayesian minimum mean square error estimation places error estimation in an optimal filtering framework. In this work, we examine the application of this error estimator to gene expression microarray data, including the suitability of the Gaussian model with normal-inverse-Wishart priors and how to find prior probabilities.

RESULTS: We provide an implementation for non-linear classification, where closed form solutions are not available. We propose a methodology for calibrating normal-inverse-Wishart priors based on discarded microarray data and examine the performance on synthetic high-dimensional data and a real dataset from a breast cancer study. The calibrated Bayesian error estimator has superior root mean square performance, especially with moderate to high expected true errors and small feature sizes.

AVAILABILITY: We have implemented in C code the Bayesian error estimator for Gaussian distributions and normal-inverse-Wishart priors for both linear classifiers, with exact closed-form representations, and arbitrary classifiers, where we use a Monte Carlo approximation. Our code for the Bayesian error estimator and a toolbox of related utilities are available at https://gsp.tamu.edu/Publications/supplementary/dalton11a. Several supporting simulations are also included.

CONTACT: [email protected]

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app