JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Slow magnetic relaxation and electron delocalization in an S = 9/2 iron(II∕III) complex with two crystallographically inequivalent iron sites.

The magnetic, electronic, and Mössbauer spectral properties of [Fe(2)L(μ-OAc)(2)]ClO(4), 1, where L is the dianion of the tetraimino-diphenolate macrocyclic ligand, H(2)L, indicate that 1 is a class III mixed valence iron(II∕III) complex with an electron that is fully delocalized between two crystallographically inequivalent iron sites to yield a [Fe(2)](V) cationic configuration with a S(t) = 9∕2 ground state. Fits of the dc magnetic susceptibility between 2 and 300 K and of the isofield variable-temperature magnetization of 1 yield an isotropic magnetic exchange parameter, J, of -32(2) cm(-1) for an electron transfer parameter, B, of 950 cm(-1), a zero-field uniaxial D(9∕2) parameter of -0.9(1) cm(-1), and g = 1.95(5). In agreement with the presence of uniaxial magnetic anisotropy, ac susceptibility measurements reveal that 1 is a single-molecule magnet at low temperature with a single molecule magnetic effective relaxation barrier, U(eff), of 9.8 cm(-1). At 5.25 K the Mössbauer spectra of 1 exhibit two spectral components, assigned to the two crystallographically inequivalent iron sites with a static effective hyperfine field; as the temperature increases from 7 to 310 K, the spectra exhibit increasingly rapid relaxation of the hyperfine field on the iron-57 Larmor precession time of 5 × 10(-8) s. A fit of the temperature dependence of the average effective hyperfine field yields |D(9∕2)| = 0.9 cm(-1). An Arrhenius plot of the logarithm of the relaxation frequency between 5 and 85 K yields a relaxation barrier of 17 cm(-1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app