JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL.

Cancer Research 2011 July 2
Combining microtubule-targeting antimitotic drugs with targeted apoptosis potentiators is a promising new chemotherapeutic strategy to treat cancer. In this study, we investigate the cellular mechanism by which navitoclax (previously called ABT-263), a Bcl-2 family inhibitor, potentiates apoptosis triggered by paclitaxel and an inhibitor of kinesin-5 (K5I, also called a KSP inhibitor), across a panel of epithelial cancer lines. By using time-lapse microscopy, we showed that navitoclax has little effect on cell death during interphase, but strongly accelerates apoptosis during mitotic arrest, and greatly increases the fraction of apoptosis-resistant cells that die. By systematically knocking down individual Bcl-2 proteins, we determined that Mcl-1 and Bcl-xL are the primary negative regulators of apoptosis during prolonged mitotic arrest. Mcl-1 levels decrease during mitotic arrest because of an imbalance between synthesis and turnover, and turnover depends in part on the MULE/HUWE1 E3 ligase. The combination of Mcl-1 loss with inhibition of Bcl-xL by navitoclax causes rapid apoptosis in all lines tested. Variation in expression levels of Mcl-1 and Bcl-xL largely determines variation in response to antimitotics alone, and antimitotics combined with navitoclax, across our panel. We concluded that Bcl-xL is a critical target of Bcl-2 family inhibitors for enhancing the lethality of antimitotic drugs in epithelial cancers, and combination treatment with navitoclax and a spindle specific antimitotic, such as a K5I, might be more effective than paclitaxel alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app