JOURNAL ARTICLE

Mammalian target of rapamycin pathway activation is associated to RET mutation status in medullary thyroid carcinoma

Ida Rapa, Enrico Saggiorato, Daniela Giachino, Nicola Palestini, Fabio Orlandi, Mauro Papotti, Marco Volante
Journal of Clinical Endocrinology and Metabolism 2011, 96 (7): 2146-53
21543427

CONTEXT: The genetic pathways involved in medullary thyroid carcinomas (MTC), except for RET mutations, are largely unknown, as is the detailed mapping of proteins activated as a consequence of RET tyrosine kinase phosphorylation.

OBJECTIVE: The present study was designed to screen for the presence of mutations in other genes downstream to RET activation and to detect the activation patterns of a panel of intracellular regulators of cell growth.

DESIGN: Forty-nine cases of MTC were analyzed for mutations in RET, BRAF, N-, H-, and K-RAS, and phosphatidylinositol-3 (PI3) kinase genes. Immunohistochemical analysis was performed using antibodies against several intracellular transducers. The effect of mammalian target of rapamycin (mTOR) inhibition was assessed in vitro onto TT cells by means of methyl thiazolyl tetrazolium and Western blot assays.

RESULTS: BRAF, K-, H-, and N-RAS, and PI3 kinase mutations were absent in all cases examined. Germline RET mutations were detected in 20% of cases overall, whereas somatic RET mutations represented 53% of sporadic tumors. RET mutational status was associated to age, presence of multifocal tumors, and nodal status, but not disease outcome. Protein expression of markers investigated was highly heterogeneous, with a strong association between phospho-mTOR, phospho-AKT, and phospho-p70S6K, positively correlated to the presence of germline RET mutations. Moreover, selective mTOR inhibition affected cell proliferation of RET-mutant TT cells.

CONCLUSIONS: Taken together, our findings indicate that mTOR intracellular signaling pathway is functionally activated in MTC with a preferential expression in cases with germline RET mutations; genes downstream to RET tyrosine kinase such as BRAF, RAS isoforms, and PI3 kinase are not mutated in MTC.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21543427
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"